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ABSTRACT 

In this paper we construct Galois extensions with the rigidity method and apply 

a criterion [15] for solving central embedding problems over Qab (t) to realize 

regularly the covering groups of most of the classical groups and the sporadic 

groups as Galois groups over Qab (t). 

1. I n t r o d u c t i o n  

Let Qab denote the maximal abelian extension of the rationals Q. After Q itself, Q~b 

is probably the most intensely studied ground field in inverse Galois theory, primarily 

because of Shafarevich's conjecture that its absolute Galois group is (profinite) free. 

At the same time, Hilbert's irreducibility theorem carries inverse Galois theory from 

Q to Q(t) (rational functions in t over Q) and from Qab to  ~)ab (t). It  is therefore 

of interest to realize groups as Galois groups over Qpb (t) by means of extensions 
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K/Q~ b (t) which are regular over Q~b, i.e., Q~b is algebraically closed in K (the same 

of course holds for Q, which is much more difficult). There is a local-global principle 

for central embedding problems over rational function fields [14] which is applied in 

[15] to formulate a simple criterion for solving central embedding problems over Q~D (t) 

if the initial Galois extension is constructed by rigidity methods. This criterion is used 

in [15] to realize covering groups of two families of finite classical groups as Galois 

groups of extensions of Q~b (t) which are regular over Qab. If N is Galois over Qab (t) 

with Galois group G, and N is regular over Q~b, we will say tha t  G is regular over 

Qab, or tha t  G occurs regularly as a Galois group over Qab (t), or tha t  G is regularly 

realizable as a Galois group over Q~b (t). In this paper  we formulate the criterion 

purely group-theoretically and apply it to regularly realize most of the remaining 

covering groups of the classical groups over Q~b (t), the main omission being the even 

dimensional orthogonal groups. 

2. T h e  cr i ter ion  

Let K be any field, Ks its separable closure, GK :---- GaI(Ks/K).  An embedding 

problem over K is an exact diagram 

GK 

1 
1 , A  . ~  e , G  . 1  

with G finite, G = Gal(L/K)  for some field L _< Ks. We will assume A to be abelian. 

A ( w e a k )  s o l u t i o n  is a continuous homomorphism f:  GK ~ G such tha t  e o f = res. 

If f is surjective, f is called a p r o p e r  solution, and the fixed field ofker  f is a s o l u t i o n  

.eld N with Gal(N/K)  ~ G. I t  is known [4, p. 397] that  if K is g i lber t ian  (and A 

abelian), then every embedding problem that  has a solution has a proper solution. 

',.1. CRITERION [15, THEOREM 5]: Let k be any algebraic extension o f Q  ab, K -- 

:(t), L / K  a finite Galois extension with group G. Let Pl , . . .  , Pr be the finite primes 

"relative to t) of K that ramify in L, ~ a pr ime divisor of Pi in L of ramification 

:ndex e~, and let the inertia group of~31 be generated by ai E G, i = 1 , . . .  , r .  Given 

central embedding problem as above with A finite cyclic of exponent m, suppose 

that for each i = 1 , . . .  , r either 

(a) (e~,m) = 1 or 

(b) (ai) is its own centralizer in G. 
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Then the embedding problem has a proper solution. 

Let G be a finite group, C = (C1,.. .  , Cs) a class vector in G, i.e., an s-tuple of 

conjugacy classes of G. Set 

E(C) := { (a l , . . .  ,as) e GSla i  �9 Ci, a l ' " a s  = 1}, 

and 

: :  { ( a l , . . .  ,as) c v , (c ) I  ( a l , . . .  ,as) = a} .  

G acts on E(C) and on E(C) by conjugation. Define n(C) := ]E(C)/C[, and ~(C) := 

IE(C)/G I. Since E(C) /G c_ E(C) /G we have g(C) _< n(C). The class vector C is 

called rigid if g(C) = 1. Let Zm denote a cyclic group of order m. 

2.2. (]RITERION: 

(a) Let G be a finite group with a rigid class vector C = ( C b . . .  ,Cs) and let 

( a l , . . .  ,as) E E(C). Assume that the center of G has a complement in the 

normalizer J~fG( (ai) ) for some 1 < i < s. Then there exists a Galois extension 

N / Q  ~b (t) regular over Q~b with Gal( N/Q~b (t) ) -~ a.  

(b) Let further m be a positive integer and suppose that for each i E { 1 , . . . ,  s} 

with one possible exception either ai has order prime to ra or ai generates its 

own centralizer in G. (These properties are clearly independent of the chosen 

representatives ai E Ci.) Then the field N in (a) can be chosen so that every 

central embedding problem for G ~- Gal(N/Q ab (t)) given by an exact sequence 

1 ' Z m  "G , a  , 1  

has a proper solution. 

Proo~ By [13, II, w Folgerung 3] (the Basic Rigidity Theorem) the rigidity of 

(3 together with the normalizer condition implies the existence of a regular Galois 

extension N/Qab(t) with Gal(N/Q~b(t)) ~ G, which is unramified outside a set 

of prime divisors Pi, 1 < i < s, of degree one of Q~b(t), which can be prescribed 

arbitrarily. Further, the inertia groups over the Pi are generated by elements ai E Ci. 

We may choose Ps to be the infinite prime (relative to t). Then the proof is 

completed by applying Criterion 2.1. | 

In general we will be dealing with covering groups with cyclic kernel, but in certain 

exceptional cases the kernel is non-cyclic. We therefore give the following reduction 

to the case of cyclic kernel. 
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2.3. PROPOSITION: Let K be a Hilbertian field containing the m-th roots of unity, 

L / K a finite Galois extension. Suppose every central embedding problem (over L / K ) 

with kernel Zm is solvable (hence properly solvable). Then every central embedding 

problem with kernel a finite abelian group of exponent m is (properly) solvable. 

Proo~ Let A, abelian (noncyelic) of exponent m, be the kernel of a central  embedding 

problem 

s  , A  , G  , G  , 1 .  

We proceed by induction on IAI . Wi thou t  loss of generali ty we may assume tha t  m is 

a pr ime power pC. Wri te  A = B x C where C is cyclic of order m = pC. By induct ion 

the induced embedding problems $ t  s with kernels A / B  ~- C and A / C  ~- B have 

proper  solutions. From the pullback diagram 

0 . O/B 

1 1 
d / c  . G 

we see tha t  in order to solve proper ly  the embedding problem s it suffices to solve 

proper ly  the two induced embedding problems s s  in such a way tha t  the two 

solution fields are linearly disjoint over L. Let N I = L(J  1/m) be a proper  solution 

field to $ I, where J <_ L*/(L*) m (N ' /L  is a Kummer  extension), and similarly let 

N" = L(xl/m),  x E L*/(L*) m, be a solution field to s  By Kummer  theory we 

see tha t  the condit ion tha t  needs to be fulfilled is tha t  J n (x) = 1. Suppose not. 

Then J contains the element x Be-1 , which is nontrivial  since x has order pC. If 

a E K*L*m/L *m, then N~ I := L((xa) 1/m) is also a solution to $ II. (This is classical, 

see [14, Prop.  2.5].) I t  therefore suffices to choose a E K*L*m/L *m of order pC such 

tha t  (a}AJ(x) = 1, since i f a  is so chosen, then (xa)NJ ~ 1 would imply (xa) p~-I E J. 

Since by assumpt ion also x p~ E J, we get a p~ E J ,  a contradiction. Also since 

{a} M (x} = 1, xa  has order pC. Now since g is n i lbe r t i an  and g := L((J(x}) 1/m) is a 

finite extension of K ,  there is an element a E K* such tha t  X m - a is irreducible over 

N,  by a refinement of Hi lber t ' s  Irreducibi l i ty Theorem (see e.g. [4, p. 145]) app l i ed  

to the irreducible polynomial  X m - Y E N[X, Y]. I 

In the following favorable cases, we can thus solve all central  embedding problems: 

2.4. COROLLARY: Let G be a finite group with a rigid class vector C = 

( C 1 , . . . ,  C~). Assume there exists r E {0, 1, ..., s} such that elements from r of the 
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classes Ci generate their proper centralizers, while the orders of  elements from the 

remaining s - r classes are pairwise coprime. Then there exists a Galois exten- 

sion N / Q  ~b (t) with Galois group G such that every central embedding problem for 

N / ~  b (t) has a proper solution. In particular, every covering group of  G is regular 

o v e r  ~ b .  

Proof: This is an easy consequence of Criterion 2.2(b) and Proposit ion 2.3. | 

3. G e n e r a t i n g  p a i r s  in s o m e  c lass ica l  g r o u p s  

In this section we construct Galois realizations for unitary and odd-dimensional 

orthogonal groups which yield themselves to an application of the Criterion 2.1. This 

is achieved by application of the criterion of Belyi to suitable class vectors of these 

groups. Rather  similar class vectors had been investigated in [12], the only difference 

being tha t  those in loc. cit. belonged to the simple groups, while here we will be 

dealing with the groups of adjoint type. So most arguments from loc. cir. carry over 

and we will refer to it for those parts.  

3.A. THE UNITARY GROUPS. We first consider the projective unitary groups. In [16] 

Walter states without proof that  the unitary groups can be generated by a transvection 

and a regular semisimple element of a suitable order. Here we prove a slightly stronger 

result, using ideas from [12]. Let G = PGU~(q),  q = p ' ,  n _> 3, be the projective 

general uni tary group defined over the finite field Fq2 with q2 elements. By [5, 3.3 

and 6.7], G contains cyclic maximal  tori T1, T2 of orders IT1[ = (a n - ( - 1 ) n ) / ( q  + 1), 

[T2[ -- an-1 _ ( _ l ) n - 1 .  (These are parametrized by the parti t ions (n) and (n - 1, 1) 

of n in the notat ion of loc. cit.) Denote by Ci the class of a generator of Ti, where 

in addition we assume tha t  C2 is chosen such tha t  C1 �9 C2 C_ G t = Un(q), which 

is clearly possible since G/G'  ~- Ti /Tf  for i = 1, 2, where T~' :-- Ti N G'. Further,  

let C3 be the conjugacy class of the image in PGU~(q) of a transvection in GUn(q) 

and denote by C := (C1, C2, C3) the corresponding class vector of G. Note tha t  the 

tori T1, T: chosen above are precisely the ones considered in [12, Th. 2.2]. For bet ter  

reference we first cite a result from loc. cit. on overgroups in G J = Us(q) of T '  (see 

[12, Th. 1.11): 

3.1. PROPOSITION: Let  G' = Un(q) with n > 3. 

(a) I f  n = 2k § 1 is odd, then a maximal subgroup M < G' of  G ~ contain- 

ing a semisimple element o f  order [T~I = (q2k+l + 1)/(d(q + 1)), where d = 

gcd(2k + 1, q + 1), either lies in the collection C3 of  subgroups defined by 
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Aschbacher, or we are in one of  the cases 

(M' ,  C t) c {(L2(7), U3(3)), (AT, U3(5)), (L2(ll), U5(2))}, 

(b) 

where M '  denotes the derived group of  M.  

I f  n = 2k is even, then a maximal subgroup M < G' of  G' containing a semisim- 

pie element of  order [T~] = (q2k-1 + 1)/(d(q + 1)), d = gcd(2k, q + 1), either lies 

in the family C1, or 

(M', a ' )  E {(A7, U4(3)), (L3(4), U4(3)), (M22, U6(2))}, 

or G' = U4(2). 

See [9] for the definition of the collections di and some of their properties. Now as 

in [12] we obtain: 

3.2. PROPOSITION: The class vector C o fPGUn(q) ,  n _> 3, (n,q) =/= (3,2), satisfies 

g(C) = 1. In particular, GU~ (q) is generated by a transvection and an element of  

order an _ (_ 1) n. 

Proof'. We use a result in [12] together with the criterion of Belyi. For this we first 

evaluate the character theoretic formula for the normalized structure constant n(C) 

of the class vector C (see [13, II, w 

IGI ~ X(ol)X(o2)X(o3) 
(3.1) n(C) = ICc(,~)I ICG(~2)I lCc(,~3)I  X(1) ' 

xCIrr(G) 

where (al, a2, a3) E E(C) and the sum runs over the irreducible complex characters 

of G = PGU~(q). Denote by T[ := T~ N G t the intersection of T~ with the derived 

group G' = Un(q). In [12, Th. 2.2(a)] it was shown that if one replaces the classes Ci 

by the classes C~ of generators of T~, then only two irreducible characters of G' do not 

vanish on both C~, C~. The argument proceeded in two steps. First, since the tori T~ 

and T~ have coprime orders, it follows from the Deligne-Lusztig theory of characters 

of reductive groups (see [1], for example) that only the so-called unipotent characters 

of G r can possibly not vanish on both classes. Secondly, by considering the prime 

divisors of the degrees of the unipotent characters it followed that every unipotent 

character different from the trivial and the Steinberg character has degree divisible by 

a prime dividing either IT~I or IT~ I. This then implied the required assertion, since it 
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is also known that  the values of unipotent characters on regular semisimple elements 

in a torus of given type are constants independent of q (see again [1], for example). 

The irreducible characters of G not vanishing on C~, i = 1, 2, are extensions of 

irreducible characters of G ~. Again, as in [12] the Deligne-Lusztig theory immediately 

shows that  at most the extensions of unipotent characters of G ~ to G can take non- 

zero values on both C1 and C2. Moreover, since these are extensions of the unipotent 

characters of G ~, the above statement about the divisibility of their degrees by suitable 

primes remains correct. It thus follows again that  at most the extensions of the trivial 

and of the Steinberg character do contribute to n(C).  

Let X be the extension to G of an irreducible character of G ~. Any other character 

X ~ of G having the same restriction to G ~ as X differs from X by multiplication with 

a linear character. Since by definition we have C1. C2 c_ G', the product  x(C1)x(C2) 

is the same as x'(C1)x'(C2). As C3 C_ G' we also have x(C3) = x'(C3). Thus we 

obtain the structure constant by evaluating the contribution of a single extension to 

G of each character of G' and then multiplying the result by the index (G: G~). 

The value of the Steinberg character St on a semisimple element a C G is known 

to be given, up to sign, by the p-part of its centralizer order: 

(3.2) St(a) = +lCG(a)lp, 

while St vanishes on all non-semisimple elements [1]. As the elements in C1 and C2 

are regular this implies that  St(ai) = • for a~ E Ci, i = 1, 2. Further, for any non- 

central element a (like the ones in C3) this shows that  ]St(a)] < St(l) .  Evaluation of 

the formula (3.1) for n(C)  thus gives n(C) > 0. 

Now take ~r :=  (a , , a2 ,a3)  e E(C)  and let H :=  (o'), H '  :--- H N G ' .  Thus H 

contains generators of Ti, and H ~ contains generators of T[, i -- 1, 2. We can hence 

use Proposition 3.1 to investigate the possibilities for H ~. As there, we distinguish two 

cases. Let first n -- 2k + 1 be odd, so Proposition 3.1(a) applies. By [9, Table 3.5.B], 

the groups in C3 are stabilizers of extension fields, so their preimages in GU2k+l(q) 

have the structure GUm(q") for 2k + 1 = mr, r _> 3 prime, and are embedded in 

the natural way. But it is clear that  under this embedding these subgroups cannot 

contain transvections of G. Further with the Atlas [2] it is easy to check that  none 

of the exceptional maximal subgroups in Proposition 3.1(a) contains transvections. 

Having thus excluded all possibilities for maximal subgroups M of G ~ as overgroups 

of H ~ we conclude H ~ = G', and hence also H = G since G/G ~ ~- T~/T[. Thus any 

pair of a transvection and a regular semisimple element in the Coxeter torus T1 of 

order (q2k+l + 1)/(q + 1) generates G. 
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If n = 2k is even we have to exclude the groups M occurring in Proposition 3.1(b). 

If G = PGU4(2), then we have C = (2A, 5A, 9A) in Atlas notation, and by [2] no 

maximal subgroup of G contains elements of orders 5 and 9, giving the result. In the 

proof of [12, Th. 3.1], it is shown that the groups in C1 cannot occur except possibly 

fol (n, q) = (6, 2). Also, the exceptional cases are excluded apart from (n, q) = (4, 3). 

But a look at [2] reveals that none of the two possibilities for M < PGU4(3) contains 

transvections. We are left with G = PGU6(2) and C = (2A, 21A,33A). By order 

considerations, all maximal subgroups of G' = U6 (2) apart from M22 can be excluded. 

But the latter group does not extend to PGU6(2), and again we obtain generation. 

Until now we have shown 0 r ~(C)  = E(C). The transvections of G := GUn(q) 

have an (n - 1)-dimensional eigenspace for the eigenvalue 1 in the irreducible matrix 

representation G ~ GLn(q2), and clearly the normalizer of G in GLn(q 2) is generated 

by G and the center Z(GLn(q2)) of GLn(q2). These are the assumptions of the 

criterion of Belyi [13, II, w Satz 1] which thus applies to a preimage of 12 in G, 

yielding g(C) = 1. | 

An application of the rigidity criterion now gives the desired Galois extensions. 

3.3. PROPOSITION: Let n >_ 3 and (n, q) ~ (3, 2). Then there exists a Galois exten- 

sion N / Q  ~b (t) regular over Q~b with group PGUn(q) and ramified in three points such 

that generators of the inertia groups at two of these points are semisimple elements 

generating their proper centralizers. The fixed field of Un(q) inside this extension is a 

rational function field Q~b (u), yielding a regular realization N / Q  ~b (u) of this group. 

Proo~ By Proposition 3.2 the class vector C = (C1, C2, C3) of G = PGUn(q) defined 

above is rigid. F~rthermore, the center of G is trivial. The first assertion then follows 

from the first part of Criterion 2.2. 

The fixed field K of the normal subgroup G' = U~(q) of G is Galois over Q~b(t) 

with Galois group the cyclic group G/G' of order gcd(n, q+  1). Since the class Ca lies 

already inside G', only two points are ramified in K/Q~b(t), and then the Hurwitz 

genus formula gives g(K) = O. | 

3.8.  THE ODD-DIMENSIONAL ORTHOGONAL GROUPS. We now turn to the orthogo- 

nal groups in odd dimension. Let p be an odd prime and G :=- SO2n+l(q), q = p", the 

special orthogonal group in dimension 2n + 1 over the finite field Fq with q elements. 

For n _> 3 the commutator subgroup G' = O2n+l(q) is a simple group and has index 2 

in G. 
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Let T be a maximal torus of G with ITI = qn+l.  (So it is parametrized by the pair of 

partitions ( - ,  (n)) in the notation of [5].) We denote by CT the conjugacy class of some 

generator T of the cyclic group T. The embedding GO2(q n) < GO2~(q) < SO2n+l(q) 

shows that  the torus T contains outer elements, so in particular CT is a conjugacy class 

in G \ G'. Let further S be a maximal torus of G of order ISI = q~ - 1 (parametrized 

by ((n), - ) )  and a �9 S a generator of the (cyclic) 2-prime part of S. The conjugacy 

class of some such a is denoted by Cs. By [9, Table 3.5] the orthogonal group 

G contains maximal subgroups of type O1(q) • O~n(q), for e = =t=, as stabilizers 

of orthogonal decompositions of the natural underlying space. These are hence the 

centralizers of their central involutions. The class with centralizer O1(q) _l_ O ~  (q) lies 

in G \ G' precisely if q~ - - e l  (mod 4). Let C2 denote this outer class of involutions. 

From the above description of the centralizers it is clear that such involutions have 

2n eigenvalues - 1  in the natural (2n + 1)-dimensional matrix representation of G. 

Let C = (C2, Cs, CT) be the class vector of G formed by the three conjugacy classes 

defined above. Note that by construction CT and C2 lie in the outer coset of G' in 

G, while Cs is contained in G'. Note also that T and S are precisely the tori T1 and 

T2 considered in [12, Th. 2.4]. 

For the proof of generation we again appeal to a result classifying the overgroups 

of the maximal torus T inside G (see [12, Th. 1]): 

3.4. PROPOSITION: Let T' := T N G' and T' <_ M < G' be a maximal subgroup of 

G r containing T ~. Then one of the following holds: 

(a) M �9 gl as defined in [9], 

(b) (M, G r) = ($9, Or(3)). 

3.5. PROPOSITION: The class vector C o fG = SO2n+l(q) satisfies g(C) = 1. 

Proof This is proved by combining a result in [12] with the Belyi criterion. We first 

evaluate the character theoretic formula (3.1) for the normalized structure constant 

n(C). In [12, Th. 2.3(a)] this was done for a class vector where the first class CT is 

replaced by the class C~ of a generator of T'  := T n G ~. It  was shown that  in this 

case only the trivial character and the Steinberg character of G ~ take non-zero values 

on both C~ and Cs. The arguments were essentially the same as those explained in 

the proof of Proposition 3.2. Thus, as there, they carry over to the extension group 

G of G ~, yielding that only the extensions of the trivial character and the Steinberg 

character of G' to G do not vanish on any of the three classes of C. Evaluating 

the Steinberg character with the formula (3.2), using that both CT and Cs contain 
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regular elements, one obtains with (3.1) that n(C) r 0. (This is true since the first 

class C2 is non-central.) 

Now take tr E ~,(C) and let H := (tr), H'  := H ~ G ' .  If possible, let M be a 

maximal subgroup of G' containing H t. Since H contains a generator of T, we have 

T'  <_ M and we are in the situation of Proposition 3.4. By Table 3.5 in [9] the groups 

in the family gl are the maximal parabolic subgroups and the reducible subgroups 

Ore(q) I O~n+l_m(q) , 1 < m < 2n + 1, m odd, e =- +, 

corresponding to an orthogonal decomposition of the natural (2n + 1)-dimensional 

orthogonal space for G. We can now proceed exactly as in the proof of [12, Th. 3.1] 

to exclude the remaining possibilities for M, since the order of elements in class Cs 

is by definition divisible by a primitive prime divisor of qn _ 1, which is the only 

property needed in loc. cit. The two preceding results show that there exist triples 

a E ~,(C) and that such triples always generate G. Since elements in class C2 have 

a 2n-dimensional eigenspace for the eigenvalue -1 ,  the criterion of Belyi applies and 

yields e(C) = 1. | 

We are now in a position to prove a Galois realization for the odd-dimensional 

orthogonal groups. 

3.6. PROPOSITION: Let n _> 3. Then there exists a Galois extension of Qab(t) 

regular o v e r  Qab with group SO2n+l (q) and generators o f  the inertia groups lying in 

the classes of  C = (C2, Cs, CT). The fixed field of O2,~+x(q) inside this extension is a 

rational function field Q~b (u), yielding a regular realization of  this group. 

Proo f  By Proposition 3.5 we have s = 1. According to the Basic Rigidity 

Theorem (Criterion 2.2) the assertion for SO2~+1(q) then follows since G has trivial 

center. The descent to the commutator subgroup G ~ = O2n+x(q)  of index 2 is done 

by the same standard argument as in the proof of Proposition 3.3 for U~(q). | 

Remark: Note that Propositions 3.3 and 3.6 give a new proof of the result of Belyi, 

reproved by Walter [16], that the groups PGU~(q), n _> 3, and SO2~+1(q) for q odd, 

n _> 3, occur regularly as Galois groups over Q~b (t). 

4. Galo is  rea l i za t ions  o f  cover ing  groups  o f  s imple  groups  

We are now going to verify Criterion 2.2(b) for a number of almost simple groups. In 

this connection it is useful to note the following: Let S be a non-abelian simple group, 
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S _< G _< Aut(S)  with G/S  cyclic. Then the Schur multiplier M(G) is a subgroup 

of the Schur multiplier M(S)  of S (see [15, Lemma 6]). A c o v e r i n g  g r o u p  or s t e m  

e x t e n s i o n  of G is a central extension 

1 . A  , G  , G  , 1  

with A contained in the commuta tor  subgroup of G. A s t e m  c o v e r  of G is a covering 

group of G with A -~ M(G). Every covering group of G is a factor group of a s tem 

cover of G [8, pp. 628-655]. 

4.1. LEMMA: Let L/k( t )  be a finite Galois extension, regular over k, with Galois 

group G, and let G be a covering group of G. If  N is a Galois extension of k(t) 

containing L with G(N/k(t))  ~ G, then N is regular over k. 

Proo~ Let k ~ be the algebraic closure of k in N. Then since L is regular over k, 

k'(t) N L = k(t), so k ' /k  is abelian. But since G is a covering group of G, the abelian 

extension k'(t) of k(t) must be contained in the fixed field of G',  which is contained 

in L. Hence k ~ = k. | 

4.2. THEOREM: 

(a) Let V~(q) _< G _< PGU~(q) for n >_ 3, (n, q) r (3, 2). Then any covering group 

of G occurs regularly as a Galois group over Q~b (t). 

(b) Any covering group of O2n+l(q) and ofSO2n+x(q), n >_ 3, occurs regularly as a 

Galois group over Q~b (t). 

Proof." We apply Criterion 2.2 to the Galois realizations found above. For (a) we s tar t  

from Proposit ion 3.3, where we obtained regular Galois realizations of G --' PGUn (q) 

for the class vector (C1, C2, C3). The elements from classes C1 and C2 are regular 

by [12, Th. 2.2(b)], so the tori they generate are already their full cent-ralizers in G. 

Hence the assertion follows by Corollary 2.4 and Lemma 4.1. 

In case (b) we may assume that  q is odd, since 02n+1(2 m) ~ S2n(2m), and this 

case was already treated in [15]. So we can utilize the Galois realization in Proposi- 

tion 3.5 defined by the class vector (C~, Cs, CT) of SO2~+1(q). Since elements from 

CT generate their full centralizer, while the orders of elements from C2 and Cs are 

coprime, the result follows by Corollary 2.4 and Lemma 4.1. | 

Together with the results in [15] this shows that  the covering groups of all classical 

groups, with the possible exception of the orthogonal groups in even dimension, have 

regular Galois realizations over Q~b (t). For the group $6(2), which was not t reated 
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in [15], a regular Galois realization of the covering group 2. $6(2) over Q(t) is already 

contained in [6, Satz 3.4]. Also, the group U3(2) is solvable and hence not of interest 

here. 

For the exceptional groups of Lie type the following intermediate result may be 

deduced from the Galois realizations of simple groups contained in the literature: 

4.3. THEOREM: Let ET(q) ~_ G (_ E7(q)ad, where q = p~ for p > 5. Then any 

covering group of  G occurs regularly as a Galois group over ~)ab (t). 

Proof: In [10, Th. 8.1] the groups ET(q)ad ---- ET(q) �9 2 for q = p ' ,  p _~ 5, were 

realized as Galois groups with a class vector C = (C1, C2, C3), where elements in C1 

have p-power order, while those in C2 and Ca have orders 2, (q - ~)(q6 _/_ ~q3 -I- 1) 

respectively, where q - - 6  (mod 3), 6 E (1, -1}.  The Schur multiplier of ET(q) has 

order gcd(2, q - 1) (see [2], for example). The order of elements in C1 is prime to 2, 

and it follows from the remarks in the proof of Prop. 8.1 in [10] that elements in C3 

generate their full centralizers. Thus the Criterion 2.1 applies. | 

For the sporadic simple groups we similarly obtain: 

4.4. THEOREM: Let S <_ G <_ Aut(S) for a sporadic simple group S ~ M22. Then 

any covering group of  G occurs regularly as a Galois group over Q~b (t). For G = M22, 

this is true at least for the three-fold covering. 

Proo~ The groups S themselves have been known to occur as Galois groups for quite 

some time (even over Q for S r M23). We refer the reader to [11, II.9] for a list of 

references. For the 3-fold coverings of Aut(S) where 

S c {M22, McL, Suz, ON, Fi22, Fi~4 } 

regular Galois realizations over Q have been obtained by Feit [3]. We treat the 

remaining cases with non-trivial multiplier by exhibiting a Galois realization of Aut(S) 

in which three points are ramified such that two of the classes in the corresponding 

class vector satisfy the assumptions listed in Criterion 2.2. This verifies the assertion 

for G = Aut(S). Since in all cases the simple group has index at most two in its 

automorphism group, an easy descent argument applies to obtain the result for S 

itself (see the proof of Proposition 3.3). 

In the table below we collect Galois realizations for the remaining sporadic groups 

with non-trivial Schur multiplier. The second column gives the corresponding class 

vector in Atlas notation, while the third lists the literature where these realizations 
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were first proved. For J3 it is easy to verify that (2B, 3A, 34A) provides a semi-rational 

rigid class vector of Aut(J3). 

For Ru and Col, Corollary 2.4 applies since all three element orders are coprime. 

In all other cases, elements from the first two classes have coprime orders, while those 

in the third class generate their full centralizer by [2]. Thus again an application of 

Corollary 2.4 yields the desired result. | 

Aut(S) C 

M12:2 
J2:2 
HS: 2 
Ru 
Suz: 2 
J3:2 
Fi22:2 
Col 
B 

(2C, 3A, 12A) 
(3A, 8C, 14A) 
(2C, 5C, 30A) 
(2A, 5A, 13A) 
(2C, 3B, 28A) 
(2B,3A,34A) 

(2D,5A,42A) 

(3A, 5C, 13A) 
(2C,3A,55A) 

[13, II, w Satz 2] 
[7] 
[7] 

[11] 
[7] 

see above 
[11] 
[11] 
[11] 

For 2.M22:2 there does not seem to exist a rigid class vector of M22:2 satisfying the 

assumptions of Criterion 2.2 with s = 3, so the case of even-order covers of Aut(M22) 

has to be left open at present. 
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